Groupoid sheaves as Hilbert modules

نویسنده

  • Pedro Resende
چکیده

We provide a new characterization of the notion of sheaf on an étale groupoid G, in terms of a particular kind of Hilbert module on the quantale O(G) of the groupoid. All the theory is developed in the context of the more general class of quantales known as stable quantal frames, of which examples are easy to construct because their category is algebraic. The homomorphisms of our Hilbert modules are necessarily adjointable and thus form a strongly self-dual category. By restriction we obtain, for any stable quantal frame, two isomorphic categories of sheaves whose morphisms are related by the duality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groupoid Actions as Quantale Modules * Pedro Resende

For an arbitrary localic étale groupoid G we provide simple descriptions, in terms of modules over the quantale O(G) of the groupoid, of the continuous actions of G, including actions on open maps and sheaves. The category of G-actions is isomorphic to a corresponding category of O(G)-modules, and as a corollary we obtain a new quantale based representation of étendues.

متن کامل

An Analytic Riemann-hilbert Correspondence for Semi-simple Lie Groups

Geometric Representation Theory for semi-simple Lie groups has two main sheaf theoretic models. Namely, through Beilinson-Bernstein localization theory, Harish-Chandra modules are related to holonomic sheaves of D modules on the flag variety. Then the (algebraic) Riemann-Hilbert correspondence relates these sheaves to constructible sheaves of complex vector spaces. On the other hand, there is a...

متن کامل

Combinatorial Systems and Schema and their Cohomology with Applications in Organizational Systems

The category of combinatorial systems is a model category for ”scaling up” algorithms. This involves networks of algorithms, herein called schedules, acting on very wide range of inputs types that are outputs from other algorithms. This patching algorithms over networks gives rise to the subcategory of combinatorial modules which are an algebraic analogy for the creation of manifolds from Eucli...

متن کامل

Modules on Involutive Quantales: Canonical Hilbert Structure, Applications to Sheaf Theory

We explain the precise relationship between two module-theoretic descriptions of sheaves on an involutive quantale, namely the description via so-called Hilbert structures on modules and that via so-called principally generated modules. For a principally generated module satisfying a suitable symmetry condition we observe the existence of a canonical Hilbert structure. We prove that, when worki...

متن کامل

ov 2 00 7 Sheaves as modules ∗

We revisit sheaves on locales by placing them in the context of the theory of Hilbert quantale modules. The local homeomorphisms p : X → B are identified with the locales X that are Hilbert B-modules equipped with a natural notion of basis. These modules form a full subcategory B-HMB of the category of Hilbert B-modules where all the homomorphisms are adjointable: for each homomorphism h there ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008